# BERT (Encoder-only Architecture)

Pretrained Models 2024 S | MSc CogSys

Meng Li

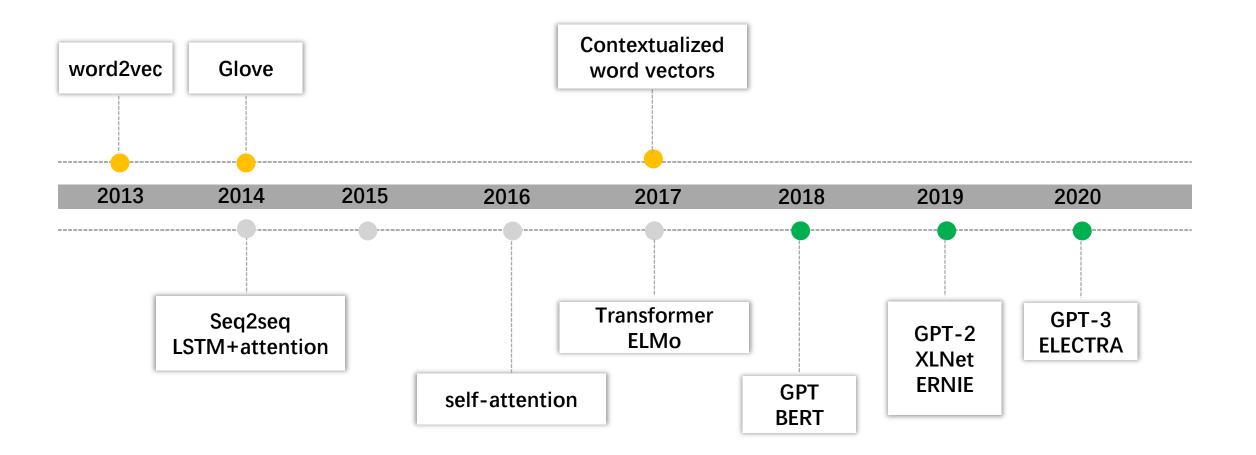
meng.li@uni-potsdam.de

(Adapted from Jacob Devlin, Danqi Chen)

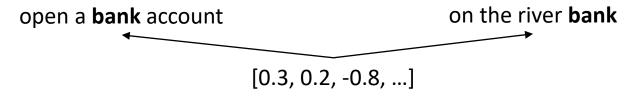


#### Announcement

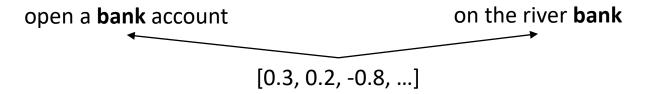
- Presenters are updated in syllabus (https://limengnlp.github.io/teaching/pretrain\_24s/)
  - Some topics are cancelled;
  - Q: move date forward or leave several breaks?



- Non-contextual word embedding
  - Continuous Bag-of-Words (CBOW) and Skip-Gram (SG) models;
  - Popular implementations: Word2vec and GloVe
  - Limitation: The embedding for a word does is always the same regardless of its context. It fails to model polysemy.



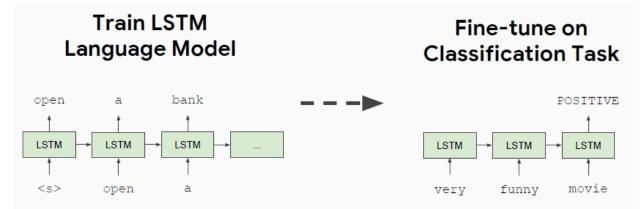
- Non-contextual word embedding
  - Continuous Bag-of-Words (CBOW) and Skip-Gram (SG) models;
  - Popular implementations: Word2vec and GloVe
  - Limitation: The embedding for a word does is always the same regardless of its context. It fails to model polysemy.



• Solution: Train **contextual** representations on text corpus ?

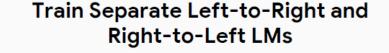
• Pre-trained contextual representations

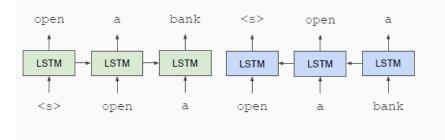
• Andrew M. Dai, Quoc V. Le 2015



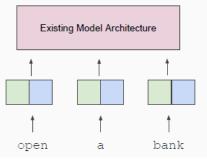
• Pre-trained contextual representations

• <u>ELMo 2017</u>





#### Apply as "Pre-trained Embeddings"



Fine-tune on

Classification Task

#### Train Deep (12-layer) Transformer LM



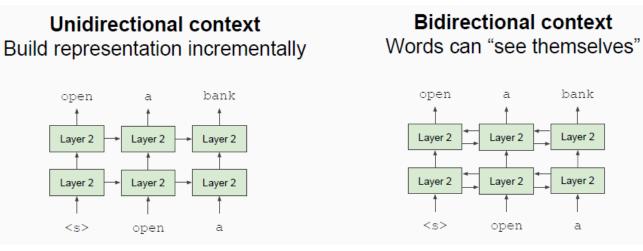
• <u>GPT-1 2018</u>

- It is a fine-tuning approach based on a deep **Transformer encoder**
- The key: learn representations based on **bidirectional context**

Why? Because both left and right contexts are important to understand the meaning of words. Example #1: we went to the river bank. Example #2: I need to go to bank to make a deposit.

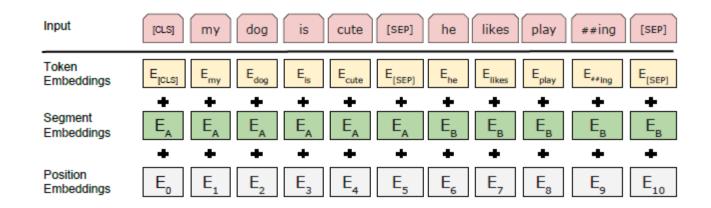
- **Pre-training objectives**: masked language modeling + next sentence prediction
- State-of-the-art performance on a large set of sentence-level and token-level tasks

- Motivation: Unidirectionality -> Bidirectionality
  - Why unidirectional LMs? (only use left or right context)
  - Reason 1: Directionality is needed to generate a well-formed probability distribution.
  - Reason 2: Words can "see themselves" in a bidirectional encoder.



 Q: the author claims "language understanding is bidirectional" in his talk at Stanford. Is it cognitive plausible? <u>How to understand the role of bidirectionality in language model pretraining</u>?

- Input/Output Representations
  - WordPiece embeddings with a 30,000 token vocabulary.
  - [CLS] sent / [CLS] sent A [SEP] sent B
  - a learned embedding to every token indicating whether it belongs to sentence A or sentence B



- Task #1: Masked LM
  - Mask out k (k=15%) of the input words, and then predict the masked words

store gallon the man went to the [MASK] to buy a [MASK] of milk

- 80-10-10 corruption (For the 15% predicted words)
  - 80% of the time, they replace it with [MASK] token went to the store  $\rightarrow$  went to the [MASK]
  - 10% of the time, they replace it with a random word in the vocabulary went to the store  $\rightarrow$  went to the running
  - 10% of the time, they keep it unchanged
  - Why? Because [MASK] tokens are never seen during fine-tuning

went to the store  $\rightarrow$  went to the store

• Task #1: Masked LM

- Masking rate (too little masking: too expensive to train; too much masking: not enough context)
  - <u>Should you mask 15% in masked language modeling?</u>
  - <u>Masked autoencoders are scalable vision learners</u> (Vision pre-training in MAE: **75%**) different semantic density in vision and language
- Masking strategy
  - 15% tokens are uniformly sampled
  - Improve: Span masking and PMI masking

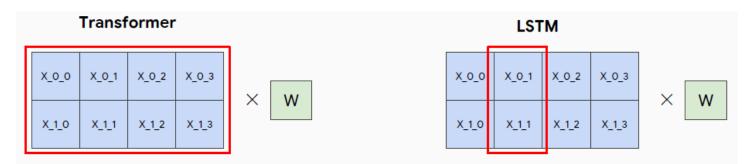
- Task #2: Next Sentence Prediction (NSP)
  - Motivation: downstream tasks such as Question Answering (QA) and Natural Language Inference (NLI) are based on understanding the *relationship* between two sentences.
  - Description: predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence.

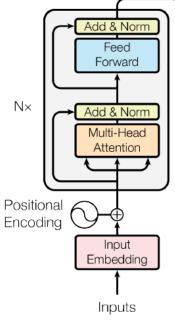
Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

• The final model achieves **97%-98%** accuracy on NSP.

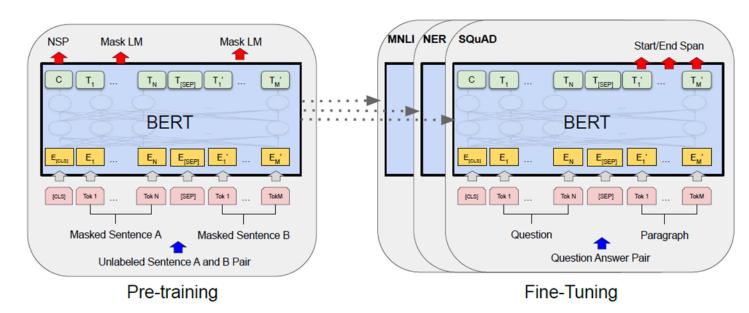
- Model Architecture
  - Transformer encoder;
  - Unified architecture across different tasks;
  - Empirical advantages of Transformer vs. LSTM:
    - Self-attention -> capture long dependency
    - Training efficiency: single multiplication per layer; effective batch size is number of words, not sequences





#### • Details

- Data: Wikipedia (2.5B words) + BookCorpus (800M words)
- Batch Size: 131,072 words (1024 sequences \* 128 length or 256 sequences \* 512 length)
- Training Time: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head, 110M parameters;
- BERT-Large: 24-layer, 1024hidden, 16-head, 340M parameters;
- Trained on 4x4 or 8x8 TPU slice for 4 days



| System           | MNLI-(m/mm) | QQP  | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE  | Average |
|------------------|-------------|------|------|-------|------|-------|------|------|---------|
|                  | 392k        | 363k | 108k | 67k   | 8.5k | 5.7k  | 3.5k | 2.5k | -       |
| Pre-OpenAI SOTA  | 80.6/80.1   | 66.1 | 82.3 | 93.2  | 35.0 | 81.0  | 86.0 | 61.7 | 74.0    |
| BiLSTM+ELMo+Attn | 76.4/76.1   | 64.8 | 79.8 | 90.4  | 36.0 | 73.3  | 84.9 | 56.8 | 71.0    |
| OpenAI GPT       | 82.1/81.4   | 70.3 | 87.4 | 91.3  | 45.4 | 80.0  | 82.3 | 56.0 | 75.1    |
| BERTBASE         | 84.6/83.4   | 71.2 | 90.5 | 93.5  | 52.1 | 85.8  | 88.9 | 66.4 | 79.6    |
| BERTLARGE        | 86.7/85.9   | 72.1 | 92.7 | 94.9  | 60.5 | 86.5  | 89.3 | 70.1 | 82.1    |

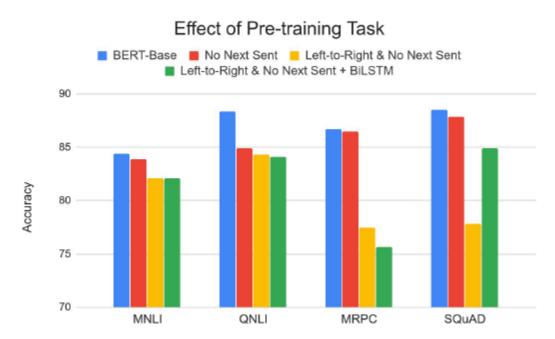
Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.<sup>8</sup> BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

#### MultiNLI

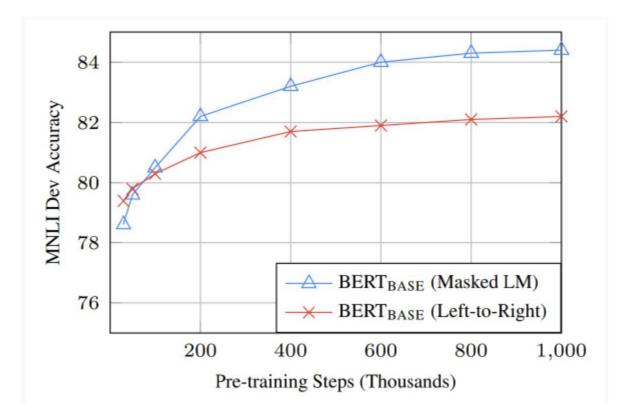
Premise: Hills and mountains are especially sanctified in Jainism. Hypothesis: Jainism hates nature. Label: Contradiction

#### CoLa

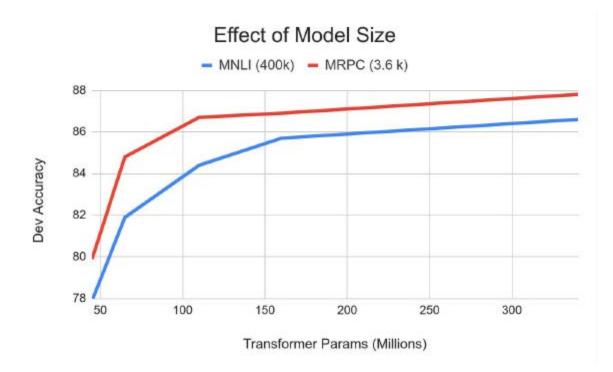
Sentence: The wagon rumbled down the road. Label: Acceptable Sentence: The car honked down the road. Label: Unacceptable



- Effect of Pre-training Task
- Masked LM (compared to left-to-right LM) is very important on some tasks, Next Sentence Prediction is important on other tasks.
- Left-to-right model does very poorly on word-level task (SQuAD), although this is mitigated by BiLSTM



- Effect of Directionality and Training Time
- Masked LM takes slightly longer to converge because we only predict 15% instead of 100%
- But absolute results are much better almost immediately



- Effect of Model Size
- Big models help a lot
- Going from 110M -> 340M params helps even on datasets with 3,600 labeled examples
- Improvements have not asymptoted

| Ma   | sking Ra | ates | Dev Set Results   |      |                      |  |  |  |
|------|----------|------|-------------------|------|----------------------|--|--|--|
| Mask | SAME     | Rnd  | MNLI<br>Fine-tune |      | NER<br>Feature-based |  |  |  |
| 80%  | 10%      | 10%  | 84.2              | 95.4 | 94.9                 |  |  |  |
| 100% | 0%       | 0%   | 84.3              | 94.9 | 94.0                 |  |  |  |
| 80%  | 0%       | 20%  | 84.1              | 95.2 | 94.6                 |  |  |  |
| 80%  | 20%      | 0%   | 84.4              | 95.2 | 94.7                 |  |  |  |
| 0%   | 20%      | 80%  | 83.7              | 94.8 | 94.6                 |  |  |  |
| 0%   | 0%       | 100% | 83.6              | 94.9 | 94.6                 |  |  |  |

Table 8: Ablation over different masking strategies.

- Effect of Masking Strategy
- Masking 100% of the time hurts on feature-based approach

Using random word 100% of time hurts slightly

- What can BERT NOT do ?
- BERT cannot generate text (at least not in an obvious way)
- Intended to be used for "analysis" tasks
- Can fill in MASK tokens, but can't generate left-to-right (repeated put MASK at the end, but it is slow)

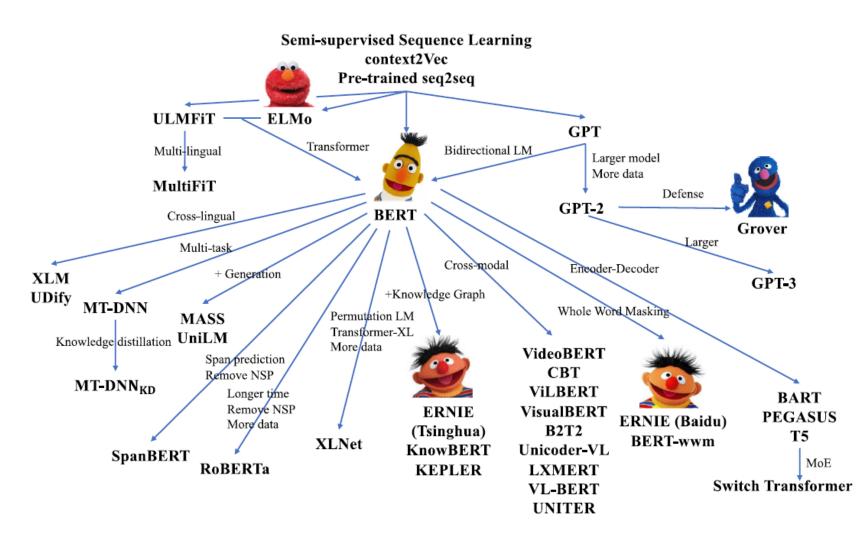
- Empirical results from BERT are great, but biggest impact on the field is:
- With pre-training, bigger == better, without clear limits (so far).
- Unclear if adding things on top of BERT really helps by very much.
  - Good for people and companies building NLP systems.
  - Not necessary a "good thing" for researchers, but important.

## After BERT

- How to build better PTMs
  - Masking;
  - Multi-lingual
  - Multi-modal

• ...

- How these model works
  - World knowledge
  - Linguistic knowledge
- How to efficiently use them





- a replication study of BERT pre-training
- Trained on 10x data & longer
- remove NSP objective
- dynamically changing the masking pattern applied to the training data
- Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)
- Citation 10000+, rejected by ICLR



- masking contiguous random spans, rather than random tokens
- training the span boundary representations to predict the entire content of the masked span, without relying on the individual token representations within it.
- substantial gains on span selection tasks such as question answering and coreference resolution.

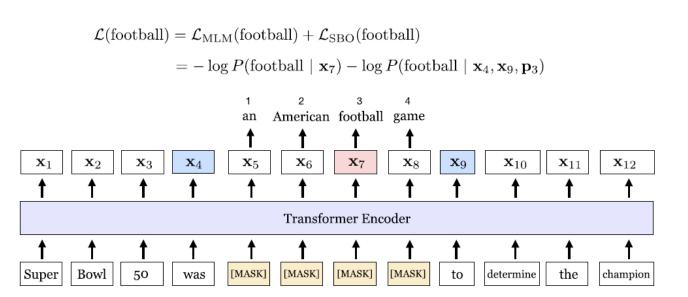


Figure 1: An illustration of SpanBERT training. The span *an American football game* is masked. The SBO uses the output representations of the boundary tokens,  $x_4$  and  $x_9$  (in blue), to predict each token in the masked span. The equation shows the MLM and SBO loss terms for predicting the token, *football* (in pink), which as marked by the position embedding  $p_3$ , is the *third* token from  $x_4$ .



- Interesting observations on reducing parameters:
  - it factorizes the input word embedding matrix into two smaller ones.
  - it enforces parameter-sharing between all Transformer layers to significantly reduce parameters.
  - it proposes the sentence order prediction (SOP) task to substitute BERT's NSP task.
- ALBERT has a slower fine-tuning and inference speed.



- unify GPT-style unidirectional generation and BERT- style bidirectional understanding;
- XLNet maximizes the expected log likelihood of a sequence w.r.t. all possible permutations of the factorization order. In expectation, each position learns to utilize contextual information from all positions, i.e., capturing bidirectional context.
- XLNet does not rely on data corruption. -> XLNet does not suffer from the
  pretrain-finetune discrepancy in BERT. Meanwhile, the autoregressive objective
  also provides a natural way to use the product rule for factorizing the joint
  probability of the predicted tokens.

### Scientific debt

- Conducting rigorous experiments and extensive ablation studies
- Reward and encourage a line of work that focuses on understanding (not just those that chase a new state-of-the-art), even when they are imperfect
- Establish standard, publicly available pre-training corpora at multiple data scales

#### Q&A