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Content

e Organization
* Logistics
e Course structure
e Grading
* Topics

 Transformer
e Explain building blocks



Logistics

Instructor: Meng Li
Time: Tuesdays, 2:15-3:45pm (first meeting on April 16)
Room: 2.14.0.32

Course Management System: Moodle (for posting questions, uploading paper
proposal / term paper)

Office Hours: appointment-based



Logistics

e Course webpage: https://limengnlp.github.io/teaching/pretrain_24s/
* We will maintain website for schedule, slides etc. here, not Moodle!

Date Topic Readings Related Materials Presenter Slides
Part 1:
Introduction
The Annotated
Transformer; The
2024/04/16 Transformer  Attention is All you Need [llustrated Transformer;, Meng

Huggingface NLP
course on transformer
(1) BERT: Pre-training of Deep
Bidirectional Transformers for
Language Understanding; (2) RoBERTa:
_ A Robustly Optimized BERT Pretraining
Pretrained . . :
Models with Approach; (3) ALBERT: A Lite BERT for A Primer in BERTology:
2024/04/23 Encoder-onl Self-supervised Learning of Language What We Know About  Meng
_ y Representations; (4) SpanBERT: How BERT Works
Architecture . . ‘
Improving Pre-training by Representing
and Predicting Spans; (5) XLNet:
Generalized Autoregressive Pretraining
for Language Understanding



Course Structure

e This seminar is the first part of “pretrained models” course and focuses on
transformer-based pretrained models with encoder-only architecture. It is a
course

* Prerequisites
e Essential understanding of neural networks;
* Familiar with NLP tasks;
* Intellectual curiosity



Course Structure

 We will focus on one topic each week.
e The first two units: tutorials on transformer and pretrained models.

 From the fourth week, there are two readings for each topic and two students will present in
each unit. Each student will present one paper and lead followed discussion or activities.

e The presentation should last 20-30 minutes and leave 15-25 minutes for discussion or
activities.

e Students are expected to read both papers every week, and submit one question for each
paper by Monday evening (23:59).



Course Structure

e Registration. If you would like to participate, you should directly register through

PULS. In addition, please drop an email to meng.li (at) uni-potsdam.de until April
19 (23:59), 2024. In your email, please:

e Tell me your name, semester, and major

e Name your top-3 paper choices from the syllabus for presenting
e Explain why you want to take this course

 List some of your related experience in deep learning/natural language
processing/implementing NLP models



Grading

e Questions about readings: 20%
e Questions are graded on a 3-point scale (0: no question submitted, 1: superficial question, 2:
insightful question).
e Presentation: 30%
e 1 assigned paper

e Final paper: 50%
e 5 pages of main content following the ACL template

* A technical report of a small independent project / A review paper / topic of your choice in
discussion with me

* Proposal due date: June 16 (23:59), 2024
e Final paper due date: October 13 (23:59), 2024



Presentation

 Motivate meaningful questions in a context and think about why this paper is
important (You’re expected to read more papers if you want to fully understand

papers)
e Pay attention to technical details, but present experimental results properly

Highlight take-aways and think about what can be done in the future

Rehearsal is important, and | am happy to provide comments and give feedback
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https://dl.acm.org/doi/abs/10.1145/3649506

Topics

Date Topic

Part 1:
Introduction

2024/04/16 Transformer

Pretrained

Models with
2024/04/23

Encoder-only

Architecture

Readings Related Materials PresenterSlides
The Annotated
Transformer: The

Attention is All you Need lllustrated Transformer; Meng

Huggingface NLP
course on transformer
(1) BERT: Pre-training of Deep
Bidirectional Transformers for
Language Understanding; (2) RoBERTa:
A Robustly Optimized BERT Pretraining
Approach; (3) ALBERT: A Lite BERT for A Primer in BERTology:
Self-supervised Learning of Language What We Know About Meng
Representations; (4) SpanBERT: How BERT Works
Improving Pre-training by Representing
and Predicting Spans; (5) XLNet:
Generalized Autoregressive Pretraining
for Language Understanding

11



Part 2: Model
Architecture
and Learning
Neural Machine

Translation of Rare
Words with Subword

(1) Between words and characters: A
Brief History of Open-Vocabulary
Modeling and Tokenization in NLP; (2)

2024/05/07 Tokenization . i . Units ;: Huggingface
Lo Unpacking Tokenization: Evaluating J0ing
. i i NLP course on
Text Compression and its Correlation .
A tokenizers; BPE
with Model Performance :
Explainer
A Cookbook of Self-
Supervised Learning; A
(1) Sentence-BERT: Sentence P Y
, , , Primer on Contrastive
Self-Supervised EBCRgR NG Simece BERT- Pretraining in Language
2024/05/14 , 5 Networks; (2) A Simple Framework for : o i
Learning . : ’ Processing: Methods,
Contrastive Learning of Visual
, Lessons Learned and
Representations : :
Perspectives; Tutorial
on SIMCLR
(1) CogTaskonomy: Cognitively Inspired
o Task Taxonomy Is Beneficial to Transfer Tutorial on transfer
2024/05/21 | e Learning in NLP; (2) Beto, Bentz, Becas: learning for NLP

The Surprising Cross-Lingual (NAACL 2019) [code]
Effectiveness of BERT



Part 3: Model
Analysis and
Interpretation

Linguistic

K led f
2024/05/28 1OWIEdge 0

Pretrained

Models

World

2004/06/04 KnOWledge of
Pretrained

Models

(1) A Structural Probe for Finding
Syntax in Word Representations; (2)
Probing Pretrained Language Models
for Lexical Semantics

(1) Evaluating Commonsense in Pre-
Trained Language Models; (2) Probing
Pre-Trained Language Models for
Cross-Cultural Differences in Values

Probing Classifiers:
Promises,
Shortcomings, and
Advances; Designing
and Interpreting Probes
with Control Tasks

13



2024/06/11

2024/06/18

2024/06/25

Part 4: Efficient
Pretrained
Models

Pruning

Quantization

Knowledge
Distillation

(1) The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural
Networks; (2) Are Sixteen Heads Really
Better than One?

(1) Understanding and Overcoming the
Challenges of Efficient Transformer
Quantization; (2) I-BERT: Integer-only
BERT Quantization

Compressing Large-
Scale Transformer-
Based Models A Case
Study on BERT; Pytorch
pruning tutorial; Diving
Into Model Pruning in
Deep Learning

Pytorch quantization
recipe; A Tale of Model
Quantization in TF Lite

Distilling the Knowledge

(1) TinyBERT Distilling BERT for Natural in a Neural Network;

Language Understanding; (2) MiniLM:

Pytorch knowledge

Deep Self-Attention Distillation for Task- distillation tutorial;

Agnostic Compression of Pre-Trained
Transformers

Distilling Knowledge in
Neural Networks With
Weights & Biases

14



Discussion

 What are you most excited about pretrained models and want to learn from this
class?



Transformer

* Recap

MT: RNN+attention -> Transformer:

Huggingface transformer library '~ Hugging Face

* Learning tips

Build transformers on your own (The annotated

transformer by Alexander Rush)
Multi 30K dataset, etc.
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https://nlp.seas.harvard.edu/annotated-transformer/
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Transformer

Encoder-decoder architecture;

Token Embedding & Positional Encoding;
Residual Connection & Layer Normalization;
Multi-head Attention;

Position-wise Feed-forward Networks;
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https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Token Embedding

* Token embeddings are multiplied by a scaling
factor sqrt(d_model), where d_model is
the hidden dimension size.

class Embeddings(nn.Module):
def __init_ (self, d_model, vocab):
super(Embeddings, self).__init_ ()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model

def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
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https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Qutput
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Feed
 Original transformer paper use fixed static rorwarg
. . r
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* where pos is the position and i is the
dimension.

# Compute the positional encodings once in log space.

Positional
Encoding

Positional
Encodin

Input
Embedding Embedding

position = torch.arange(@, max_len).unsqueeze(l) T T

pe = torch.zeros(max_len, d_model)

div_term = torch.exp(

Inputs Qutputs
torch.arange (@, d_model, 2) * -(math.log(10000.0) / d_model)

(shifted right)
)

pe[:, 0::2] = torch.sin(position * div_term) Figure 1: The Transformer - model architecture.
pe[:, 1::2] = torch.cos(position * div_term)

pe = pe.unsqueeze(0) Vaswani et al (2017) 19



https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Encoding Layer

e Sublayer 1: Multi-head attention -> Residual connections and
layer normalization;

e Sublayer 2: Position-wise feed-forward networks -> Residual
connections and layer normalization;

class Encoderlayer(nn.Module):

"Encoder is made up of self-attn and feed forward (defined below)

def _ init_ (self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self). init_ ()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)

self.size = size

def forward(self, x, mask):
"Follow Figure 1 (left) for connections.™
x = self.sublayer[@](x, lambda x: self.self attn(x, x, x, mask))
return self.sublayer[1](x, self.feed forward)
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Attention
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Vaswani et al (2017)
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https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Residual connections

e asimple yet very effective technique to make training deep neural networks easier;
ResNet 1000 layers

e Avery deep network may act like a combination of shallower networks (with more
channels)

-
X : X ' Residual
i | Block —
] [l 7 .\
] ¥ ]
i : Layer i : r—>| Add S:N{er ]
: ' Feed
E 4 ' F 4 i ' Forward
i . identity | T
' 1
C ' Layer i +n |
v ' N Add & Norm
: Ry ' y
' (M 5 Multi-Head
Fix) ' N ' :
' ¥ ' Attention
. . -
I
Tradilional Fesdiorward With Residual Connection \ /

without Residual Connection

Source Vaswani et al (2017) 21



https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://towardsdatascience.com/what-is-residual-connection-efb07cab0d55

Scaled Dot-Product Attention

Attention

Mathul
SoftMax

-T
QR

Attention(Q, K, V') = softmax(
vk

 How to understand this formula? Do not scared by Q, K, V matrix
computations ...

Hotly

e What is the inner product of vectors, how is it calculated, and

most importantly, what is its geometric interpretation? Multi-Head Attention

Linear

Concat

e If we multiply a matrix X by its own transpose, what does it
mean?

I
Scaled Dot-Product J& h
Attention N

1 1

| |
[T_inear]_] [T_inear]J [T_inear]J

e

V K Q

Vaswani et al (2017) 22



https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Attention

Attention(Q, K, V') = softmax(

 softmax(XXT)X
e What does XX7 stand?

QK'
Var

W

23



Attention e el (N

<@ - <@ — 22

. i . KT
Attention(Q, K, V') = softmax( Q\/d’_ W D<@ - @ <@ = 1°
' k
<O +@ <@ — 43
 softmax(XXT)X
<@+ <& = 50
e What does XXT stand? i i
 The geometric meaning of the inner product of 8 multiplications
vectors? The angle between two vectors and the
projection of one vector on another vector. how are  you
e The larger the value of the projection, the higher the how are you
correlation between the two vectors. (when paying  M™W |1[2]1[2]1 1 1 3 ow 0T 0
attention to word how, more attention also should 2 1 1
be given to word are) are |1]1]8]2]1] x [3 3 o= e
e XXT is a square matrix that stores the result of the 5 ) 1 you
inner product operation of each vector with itself you [3]1(211]1
1 1 1

and other vectors.
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Attention

QK'
Var

Attention(Q, K, V') = softmax( W
 softmax(XXT)X

* What about adding softmax function?

* Normalization (the sum of these numbers is 1)

e what is the core of the Attention mechanism?

 Weighted sum. Weights are the numbers after
normalization. When we focus on the word “how",
we should allocate 0.4 of our attention to it itself,
leaving 0.4 to focus on “are" and 0.2 to “you".

how

are

you

how

are

you

RNk -

RN I T IOUIN (SN TN

Rl N~ |w

how
are

you

how
are

you

how are you

11 | 11 | 10
how are vyou

0.4

0.4

0.2




Attention

QK'
Var

Attention(Q, K, V') = softmax( W
 softmax(XXT)X
 What is the meaning of the last X?

* The new vector is the weighted sum of the “how"
word vectors through the attention mechanism

how

are

you

how

21112
111(3]2 X
3111211

how
how are you

04 |1 04 |02 | w are

you

how are you
how are vyou
1 1 3
h
5 1 1 ow 11 |11 | 10
are
1 3 2
you
2 2 1
1| (1] |12 @
how are vyou
how 04 | 04 | 02
are
you
1 1 1
1 3 1 14 | 14 | 2 18 | 1
3 2 1
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Attention

QK"

Attention(Q, K, V') = softmax(
y 1L A

W

e What are Q, K, V exactly?

e Q, K,V are derived from the product of X and matrix W,
which are essentially linear transformation of X.

e Why not just use X but linearly transform it?

e Trainable W matrices could improve the fitting capacity
of the model.

The illustrated transformer

27


https://jalammar.github.io/illustrated-transformer/

Attention

QK"
Vi

Attention(Q, K, V') = softmax(

* i

* Dimensions of Q, K -> the variance of softmax(QKT) and stable training

%

def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked fill(mask == @, -1e9)
p_attn = scores.softmax(dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)

return torch.matmul(p_attn, value), p_attn

28



Attention

Attention(Q, K, V') = softmax(

MultiHead(Q, K,V') = Concat(head;, ..., hea,dh)WO
where head; = Attention(QWiQ, KWE vw))

Where the projections are parameter matrices WEQ & Rdmddxcik, WiK & Rd‘“C’deIXdk, mV -

Rdmodel X d-t-' ElIld WO E th@! X dmodel .

QK"
V.

%

Scaled Dot-Product Attention

| Mathul l

Q KoV

Multi-Head Attention

Scaled Dot-Product h
Attention
L tl !
£~ fam £~
Linear Linear Linear I]
7
A K Q

Vaswani et al (2017) 2°



https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Position-wise Feed-forward Networks

FFN(x) = max(0,zW; 4 b;)Ws5 + by

class PositionwiseFeedForward(nn.Module): O
L - " r -\
Implements FFN equation.
~>| Add & Norm |
def init (self, d model, d _ff, dropout=0.1): F;?j;d
super (PositionwiseFeedForward, self)._ _init_ () -
self.w_1 = nn.Linear(d _model, d_ff) N
self.w 2 = nn.Linear(d_ff, d _model) N x Add & Norm
self.dropout = nn.Dropout(dropout) YT .H 3
Lit-Rea
Attention
def forward(self, x): n - '
return self.w_2(self.dropout(self.w_1(x).relu())) \ )
\,

Vaswani et al (2017) 30



https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Quiput
Probabilities

t

Decoding Layer =

l Linear |

- '
[ Add & Norm e~
* masked multi-head attention layer: the decoder representation reed
so far as the query, key and value (target mask to prevent 1 )
peaking/cheating); [Add & Norm J<~
Multi-Head
* multi-head attention layer: the decoder representation as the }Aﬁe;ﬁm} o
qguery and the encoder representation as the key and value; —
| Add & Norm =
class DecoderLayer(nn.Module): MQSREd
"Decoder is made of self-attn, src-attn, and feed forward (defined below)" MU|t|_H.ead
Attention
def __init_ (self, size, self_attn, src_attn, feed_forward, dropout): L—)
super(DecoderLayer, self).__init_ () . —)
self.size = size Positional
self.self_attn = self_attn = l, ] o
self.src_attn = src_attn Encoding
self.feed_forward = feed_forward Output
self.sublayer = clones(SublayerConnection(size, dropout), 3) Embedding

def forward(self, x, memory, src_mask, tgt_mask): T
"Follow Figure 1 (right) for connections.” OUTDUTS
m = memory (shifted right)
self.sublayer[@](x, lambda x: self.self_attn(x, x, x, tgt_mask))

= self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))

return self.sublayer[2](x, self.feed forward) Vaswan| et al (2017) 31
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https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Not covered

e Source / target masking

e Optimization / regularization:
e Layer normalization;
e Label smoothing

* Training settings

e MT: decoding methods (greedy, beam search, etc.)



Bonus

e Attention in transformers, visually explained

33


https://www.youtube.com/watch?v=eMlx5fFNoYc
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